CETONI Nemesys S Flow System, pulsation-free syringe pump

Syringe pump

Nemesys S

The Gold Standard for Microfluidics

The Nemesys syringe pump doses liquids with extreme accuracy down to the sub-nanoliter range. The highly developed drive concept moves the syringe plunger without any jerking, and thus allows the liquid to be conveyed very gently. The ideal solution for demanding microfluidic applications.

More details
CETONI Nemesys M Flow System, pulsation-free syringe pump

Syringe pump

Nemesys M

Power and precision up to 200 bar

High-pressure injection or viscous medium? The CETONI Nemesys M has enough reserves to master demanding situations, so that you can concentrate on your research.

More details
nemesys high pressure module

Syringe pump

Nemesys high pressure module

Performs up to 500 bar in any situation

Test beds, high pressure applications and viscous liquids – no problem for the Nemesys high pressure syringe pump. The compact design and variable syringe sizes create space for a wide variety of applications.

More details
nemesys ultra high pressure module

Syringe pump

Nemesys ultra high pressure module

The power pack for application pressures up to 890 bar

Enormous power with outstanding precision and a selection of large syringes provide enough leeway for high throughput applications, continuous media supply or applications with syringe pressures close to 1000 bar.

More details

What are flow systems?

Many fluidic processes in a wide variety of areas that were conventionally carried out in batch processes, can be converted into progressive flow processes, and offer a number of advantages over conservative approaches, such as high process reliability, homogeneous reaction conditions, time and resource savings. The areas of application range from microbiology to bio-, fine and synthetic chemistry to petrochemistry, geochemistry and geophysics.

For example, if cell cultures were previously cultivated on agar plates, these can now be carried out using microfluidic processes in the smallest droplets, in so-called compartment flows. On one hand, this results in a much greater selectivity of the starting material (few or even just one organism per droplet). On the other hand, an extremely large number of cultures is made possible in the smallest of spaces.

In chemical syntheses and their yield of the desired target substances, it is important to maintain the optimal process parameters, at any time and at any point in the entire reaction volume. This is not possible in large batch approaches.

In the flow process, however, the reaction conditions can be set and controlled very precisely, especially in the case of strongly exothermic reactions or highly reactive substances or mixtures. Often, the optimal parameters are not even known. The search for them is made possible by flow chemistry in connection with inline analysis technology and intelligent software solutions. When researching oil and gas deposits and exploring them, the simulation of the conditions in the deposit and in the rock using flow methods, can bring great advantages in terms of yield and quality of production. In this context, for example in the area of geophysics, geological processes are simulated and examined through the targeted combination of microfluidics and imaging processes (electron accelerator/synchrotron), in order to be able to better predict natural disasters ( read more under Application Notes ).

These few examples alone show that there are hardly any limits to the variety of ideas when using microfluidic techniques. Wherever you reach your limits with conventional methods, it pays to just think in terms of flow!

Haven’t found the right thing yet?

Special solutions for industry

Would you like more throughput, pressure or volume, and are you moving in a demanding, industrial environment with special safety and design requirements?

Then contact us! We have ideas and solutions especially for industrial applications!

Contact us!